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Abstract
Automatic sets D ⊂ Z

m are characterized by having a finite number of
decimations. They are equivalently generated by fixed points of certain
substitution systems, or by certain finite automata. As examples, two-
dimensional versions of the Thue–Morse, Baum–Sweet, Rudin–Shapiro and
paperfolding sequences are presented. We give a necessary and sufficient
condition for an automatic set D ⊂ Z

m to be a Delone set in R
m. The result

is then extended to automatic sets that are defined as fixed points of certain
substitutions. The morphology of automatic sets is discussed by means of
examples.

PACS numbers: 61.44.Br, 61.50.Ah, 89.75.Kd, 02.10.De
Mathematics Subject Classification: 52C23, 11B85

1. Introduction

A Delone (or Delaunay) set D ⊂ R
m is a set that is uniformly discrete, i.e. there exists an

r > 0 such that for every x ∈ R
m the ball of radius r centred at x contains at most one element

of D, and it is relatively dense, i.e. there exists an R > 0 such that for every x ∈ R
m the ball

of radius R centred at x contains at least one element of D. Delone sets are the candidates for
structures with long-range aperiodic order such as quasi-crystals, see, e.g., [1, 2].

Automatic sets D ⊂ Z
m are characterized by having a finite number of decimations

(subsets of a specific type), and are equivalently generated by fixed points of certain substitution
systems or by certain finite automata (hence the qualification ‘automatic’), see, e.g, [3]. Apart
from being considered as such, automatic sequences arise indirectly, among others, in certain
cellular automata and in coarse-graining invariant structures (e.g., [4, 5]), in connection with
number theory (e.g., [6]), and in the context of quasi-crystals (e.g., [7]). See [3, 8] for more
extended lists of references.

In this paper, we discuss H-automatic sets, where H is an expanding endomorphism, and
their relation to Delone sets. Since H-automatic sets are per definition subsets of the lattice
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Z
m, the discreteness of a subset D poses no problem at all. We state a necessary and sufficient

condition for an automatic set to be a Delone set. Delone sets on lattices are also studied in
[9] and [10].

The paper is organized as follows. In the next section, we present the basic facts about
automatic sequences and automatic sets. In section 3, we discuss the link with substitutions
and finite automata. This also provides the necessary tools for the main result which can be
found in section 4. In section 5, we study Delone sets which are defined as fixed points of
certain substitutions and discuss their morphology.

2. Automatic sets

We introduce the notion of an automatic set as in [3]. To this end, let H : Z
m → Z

m be
a group-endomorphism of the additive group (Zm, +), i.e. H can be considered as an m ×
m-matrix with integer entries, and H(x) = Hx (matrix vector product, where x is considered
as a (column) vector in Z

m). Moreover, we assume that H is expanding, i.e. there exists c > 1
such that

‖Hx‖ � c‖x‖
for all x ∈ Z

m and a norm ‖‖ that is equivalent to the usual Euclidian norm. As usual, for
R > 0 we set

BR(0) = {x ∈ Z
m | ‖x‖ < R} and BR(y) = y + BR(0) = {y + x | x ∈ BR(0)}.

A finite subset W of Z
m is called a residue set of H if for every x ∈ Z

m there exist unique
ζ(x) ∈ W and κ(x) ∈ Z

m such that

x = ζ(x) + Hκ(x).

The maps ζ : Z
m → W and κ : Z

m → Z
m are called residue-map and image-part map,

respectively. Note that the cardinality of W equals |det H |.
The residue set W = {w0 = 0, w1, w2, . . . , w|det H |−1} for H is called a complete digit set

of H, if for every x ∈ Z
m there exists n = n(x) ∈ N such that

κn(x) = 0. (1)

This is equivalent to: every x ∈ Z
m\{0} has a finite (H,W)-representation, i.e. for every

x ∈ Z
m\{0} there exist unique ωi ∈ W, i = 1, . . . , n such that

x = Hn−1ωn + Hn−2ωn−1 + · · · + Hω2 + ω1 (2)

and ωn �= 0. From now on, W always denotes a complete digit set of the expanding
endomorphism H. Theorem 2.2.7 in [3] guarantees, by construction, the existence of a complete
digit set if the expanding constant c of H is larger than 2. However, the full determination
of complete digit sets in this case, and also if c � 2, is an open problem. But, by lemma
2.2.3 in [3], it is sufficient to test condition (1) (or the finiteness of (2)) only for finitely many
x ∈ Z

m, in order to conclude that a given residue set is a complete digit set. This is how certain
complete digit sets in section 5 were found. For further interesting problems and results on
digit sets arising in the representation of numbers in Z and of complex integers, we refer to
chapter 3 in [8] and chapter 7 in [11] and to the references there.

If y ∈ Z
m then κ−1(y) denotes the set κ−1(y) = {Hy + w | w ∈ W }. Consequently, for

l ∈ N one sets

k−l (y) = {
Hly + �l

i=1H
i−1ωi

∣∣ωi ∈ W, i = 1, . . . , l
} = Hly + κ−l(0). (3)
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Observe that W being a residue set implies that for all s ∈ N,

Z
m =

⋃
y∈Z

m

(H sy + κ−s(0)).

We note a trivial but important lemma.

Lemma 2.1. Let H : Z
m → Z

m be expanding and let W be a complete digit set. For every
R > 0 there exists an N = N(R) such that

BR(0) ⊆ κ−N(0).

Proof. For every x ∈ BR(0) there exists an n = n(x) such that κn(x) = 0. If
N = max{n(x) | x ∈ BR(0)}, then

κN(BR(0)) = {0}.
Taking the inverse proves the assertion. �

Let S be a finite set, which for convenience is considered as a subset of Z. By abuse of
language we call the elements of SZ

m

, i.e. the maps from Z
m to S, sequences. For a sequence

f : Z
m → S, and for w ∈ W , the (H,w)-decimation of f is defined as the sequence ∂w(f )

satisfying

∂w(f )(x) = f (Hx + w). (4)

The maps ∂w : SZ
m → SZ

m

, w ∈ W , are called decimations. Repeated application of
decimations to a sequence f leads to another decimation of f :

∂ωn
◦ ∂ωn−1 ◦ · · · ◦ ∂ω1(f )(x) = f (Hnx + Hn−1ωn + Hn−2ωn−1 + · · · + ω1). (5)

The set of all decimations of f together with f , forms the (H,W)-kernel of f :

ker(H,W)(f ) = {f } ∪ {
∂ωn

◦ ∂ωn−1 ◦ · · · ◦ ∂ω0(f )
∣∣ n ∈ N, ωi ∈ W, i = 0, . . . , n

}
. (6)

We agree to simply write ker(f ) if H and W are clear from the context.

Definition 2.2. The sequence f ∈ SZ
m

is called (H,W)-automatic if the (H,W)-kernel is a
finite set.

Due to theorem 3.2.2 in [3], the automaticity does not depend on the choice of the residue set
W . It is therefore justified to speak of an H-automatic sequence.

We conclude with the definition of an H-automatic set.

Definition 2.3. A subset D ⊂ Z
m is called H-automatic if its characteristic sequence

χD : Z
m → {0, 1}, such that χD(x) = 1 if and only if x ∈ D, is an H-automatic sequence.

Clearly, if f : Z
m → {0, 1} is an H-automatic sequence, then the support of f, supp(f ) =

{x | f (x) = 1} defines an H-automatic set.
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3. Substitutions and finite automata

In this section, we describe how an automatic sequence is related to a fixed point of a
substitution map. For an H-automatic sequence f with values in S and a complete digit set
W , we define decimation matrices Aw = (

aw
g,h

) ∈ {0, 1}ker(f )×ker(f ), w ∈ W by

aw
g,h =

{
1 if ∂w(g) = h

0 otherwise.

Note that every matrix Aw has precisely one 1 in each row. Since S is a subset of Z we can
multiply the matrix Aw with the column vector ξ = (ah)h∈ker(f ) ∈ Sker(f ) from the right, then
ξ ′ = (a′

g)g∈ker(f ) = Awξ , where

a′
g =

∑
h∈ker(f )

aw
g,hah

for all g ∈ ker(f ). Using this product we can define a substitution �f on the set of sequences
with values in the set Sker(f ) in the following way. If F : Z

m → Sker(f ) is such a sequence,
then �f (F ) : Z

m → Sker(f ) is defined as

�f (F )(x) = Aζ(x)F (κ(x)) (7)

for x ∈ Z
m. Or, equivalently, �f (F ) is obtained from F by putting

�f (F )(Hx + w) = AwF(x) (8)

for all w ∈ W and all x ∈ Z
m. Then the sequence F : Z

m → Sker(f ) defined as

F(x) = (g(x))g∈ker(f )

for x ∈ Z
m is a fixed point of the substitution �f , i.e. �f (F ) = F , see, e.g., [3]. As

a consequence, using (8), if x = ∑n
j=1 Hj−1ωj is the unique (H,W)-representation of

x ∈ Z
m\{0}, then

F(x) = Aω1Aω2 . . . Aωn
F(0). (9)

Let �f denote the semigroup which is generated by all products of the matrices Aw,w ∈ W .
As a consequence of (9), the set of (vector) values appearing in the sequence F is given by
the orbit of F(0) under the action of �f , i.e. by

�fF(0) = {AF(0) | A ∈ �f }.
This set will play a crucial role in theorem 4.2.

The decimation matrices Aw,w ∈ W also define a directed graph, the kernel graph, where
the vertices correspond to the elements of ker(f ), and where a vertex g ∈ ker(f ) is connected
to a vertex h ∈ ker(f ) by a directed edge with label w, if h = ∂w(g), i.e. if aw

g,h = 1.
For example, assume that f is an automatic (H, {w0, w1})-sequence, with ker(f ) =

{f, g, h} and decimation matrices

Aw0 =

0 1 0

1 0 0
0 0 1


 Aw1 =


1 0 0

0 0 1
0 0 1




where the rows and columns of the matrices correspond to the elements f, g, h, in that order.
The kernel graph associated with Aw0 , Aw1 is given as

f g hw1 w1
,w1

w0

w0w0
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(a) (b)
x1x1

x2 x2

t 1 t-

Figure 1. (a) The support of the two-dimensional Thue–Morse sequence t, represented by the
white points, in the square [−30, 30] × [−30, 30]. (b) The sequence 1 − t is the second element
in the kernel of the sequence t. The white points in both figures form an (H, W)-automatic set for
(H, W) given in example 1.

Another interpretation of the kernel graph is that of a finite automaton that generates the
sequence f , see, e.g., [3]. The idea of generating a sequence is as follows: If x ∈ Z

m, x �= 0,
has the (H,W)-representation

x =
n∑

j=1

Hj−1ωj

then x defines a path in the directed graph. The path begins in f , follows the arrows labelled
as ω1, ω2, . . . , ωn and terminates in an element g ∈ ker(f ). Then the value of f at x is equal
to the value of g at 0, i.e. f (x) = g(0).

Example 1. The following four examples concern sequences over Z
2 that are (H,W)-

automatic counterparts of the well-known one-dimensional 2-automatic Thue–Morse,
Paperfolding, Baum–Sweet and Rudin–Shapiro sequences defined over N (see, e.g., [6]).
The expanding endomorphism on Z

2 is defined by

H =
(−1 −1

1 −1

)

with W = {w0 = (0, 0)T , w1 = (1, 0)T } (T means transpose) as a complete digit set of H.

(i) Thue–Morse sequence over Z
2. The one-dimensional Thue–Morse sequence t : N →

{0, 1} is defined by the recursion t (2s) = t (s), t (2s + 1) = 1 − t (s), s ∈ N, starting
with t (0) = 0. By analogy, i.e. replacing 2 by H, and 1 by w1 one defines recursively a
sequence t : Z

2 → {0, 1} by setting

t(Hx) = t(x) t (Hx + w1) = 1 − t(x)

and t((0, 0)T ) = 0. Since W is a complete digit set of H, this actually defines a sequence
over Z

2. A part of this sequence is displayed in figure 1(a).
The kernel of t is given by all its decimations. We compute that ∂w0(t)(x) = t(Hx) =

t(x), according to the recursion.
Also, ∂w1(t)(x) = t(Hx +w1) = 1− t(x), i.e. ∂w1(t) = 1− t, where 1 is the sequence

with constant value 1.
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(a) (b)

p g

x1 x1

x2 x2

Figure 2. (a) The support of the two-dimensional paperfolding sequence represented by the white
points in the region [−30, 30]×[−30, 30]. (b) The sequence g = ∂w0 (p) is the second nonconstant
sequence in the kernel of p.

In a similar way, it can be shown that ∂w0

(
∂w1(t)

) = 1 − t and ∂w1

(
∂w1(t)

) = t,
implying that the (H,W)-kernel is given by the finite set {t, 1 − t}. This shows that t is
H-automatic. The sequence 1 − t is displayed in figure 1(b).

The sequence F is thus given by ((t(x), 1− t(x))T )x∈Z
2 , and the decimation matrices

are

A0 =
(

1 0
0 1

)
Aw1 =

(
0 1
1 0

)
.

One can easily check that the corresponding substitution �t has the fixed point F .
Actually, F can be grown by starting the substitution from F(0) = (0, 1)T . Also,
one can easily check that the set of all possible matrix products of A0, Aw1 is given by
�t = {

A0, Aw1

}
.

(ii) Paperfolding sequence over Z
2. The one-dimensional paperfolding sequence p is defined

by the recursion p(4s) = 1, p(2s + 1) = p(s), p(4s + 2) = 0 for all s ∈ N, with initial
condition p(0) = 1. This now leads to the two-dimensional counterpart defined by

p(H 2x) = 1 p(Hx + w1) = p(x) p(H 2x + Hw1) = 0

and initial condition p((0, 0)T ) = 1. The sequence is displayed in figure 2(a). In
order to compute the kernel of p, observe that ∂w1(p)(x) = p(Hx + w1) = p(x), and
thus ∂w1(p) = p, and that ∂w0(p)(x) = p(Hx). If x ∈ HZ

2 + w1, then p(Hx) =
p(H 2(H−1(x−w1))+Hw1) = 0, and if x ∈ HZ

2, then p(Hx) = p(H 2(H−1x)) = 1, due
to the recursion. It follows that for the sequence g = ∂w0(p), ∂w0(g) = 1 and ∂w1(g) = 0,
the sequence with constant value 0. The sequence g is the periodic sequence displayed in
figure 2(b). As a consequence, the (H,W)-kernel of p is the set {p, g, 1, 0} and hence p is
H-automatic. The corresponding sequence F is given by F = ((p(x), g(x), 1, 0)T )x∈Z

2 .
Also here, F can be obtained from F(0) = (1, 1, 1, 0)T by the substitution defined by the
decimation matrices

A0 =




0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


 Aw1 =




1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1


.



Automatic sets and Delone sets 4023

(a)

(b)

x
1

x
2

x
2

b

h

Figure 3. (a) Support of the two-dimensional Baum–Sweet sequence b in the region
[−150, 150] × [−100, 100]. (b) The sequence h is the other nonconstant element in the kernel b.
The insets, in an otherwise black area, are enlargements by a factor 2 of the indicated top-left part.

Calculating the matrix products shows that

�p = {
A0, Aw1 , A

2
0, Aw1A0, A0Aw1 , Aw1A0Aw1 , Aw1A

2
0

}
.

(iii) Baum–Sweet sequence over Z
2. The one-dimensional Baum–Sweet sequence b is defined

recursively by b(4s) = b(s), b(2s + 1) = b(s), b(4s + 2) = 0 for all s ∈ N, with initial
condition b(0) = 1. This leads to the two-dimensional counterpart defined by

b(H 2x) = b(x) b(Hx + w1) = b(x) b(H 2x + Hw1) = 0

for x ∈ Z
2 and initial condition b(0) = 1. The sequence is displayed in figure 3(a).

Doing a similar analysis as in the previous examples, it can be shown that ∂w0(b)(x) =
b(Hx) = 0, if x ∈ HZ

2 + w1; and ∂w0(b)(x) = b(H 2(H−1x)) = b(H−1x), if x ∈ HZ
2.

This gives ∂w0(b) = h. Also, ∂w1(b) = b, ∂w0(h) = b and ∂w1(h) = 0. As a consequence,
ker(b) = {b, h, 0}. The corresponding F is obtained from F(0) = (1, 1, 0)T by
performing the substitution induced by the decimation matrices

A0 =

0 1 0

1 0 0
0 0 1


 Aw1 =


1 0 0

0 0 1
0 0 1


 .
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(a)

(c)

(b)

(d)

r

r2

r1

r3

x1

x1

x1

x1

x2

x2

x2

x2

Figure 4. (a) Support of the two-dimensional Rudin–Shapiro sequence r in the domain
[−30, 30] × [−30, 30]. (b)–(d ). The other three kernel elements of r.

Finally,

�b = {
A0, Aw1 , A

2
0, A0Aw1 , Aw1A0, A0Aw1A0, Aw1A0Aw1

}
.

(iv) Rudin–Shapiro sequence over Z
2. The two-dimensional recursion defining this sequence

r is also a straightforward adaption of its one-dimensional counterpart and is given by

r(H 2x) = r(x) r(Hx + w1) = r(x) r(H 2x + Hw1 + w1) = 1 − r(Hx + w1)

with r((0, 0)T ) = 0. The sequence is displayed in figure 4(a). By a similar analysis
as before, the (H,W)-kernel of r is given by the sequences r, r1, r2, r3 which are all
displayed in figure 4. The corresponding decimation matrices are

A0 =




1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1


 Aw1 =




0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0


.

Furthermore, F(0) = (0, 0, 1, 1)T , and

�r = {
A0, Aw1 , A

2
w1

, A0Aw1 , Aw1A0, A
2
w1

A0, A0A
2
w1

, A0A
2
w1

A0
}
.
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We conclude this section with a characterization of H-automatic sequences that will be used
later. To this end we remind the reader that a sequence (qn)n∈N with qn ∈ S is called eventually
periodic if there exists a positive integer d such that qn+d = qn for all n sufficiently large. If
f ∈ SZ

m

is any map, we consider the set of all decimations of level n ∈ N, which is given as

	f (n) = {
∂ω1 ◦ · · · ◦ ∂ωn

(f )
∣∣ ωi ∈ W = {0, w1, . . . , w|det (H)|−1} i = 1, . . . , n

}
with 	f (0) = {f }. The H-automatic sequences are then characterized by

Theorem 3.1 ([12]). A sequence f ∈ SZ
m

is H-automatic if and only if the sequence
	f = (	f (n))n∈N is eventually periodic.

4. Main result

A sequence f : Z
m → {0, 1} is called a Delone sequence if it is the characteristic sequence of

a Delone set, otherwise it will be called a non-Delone sequence.
Before we state the main result of this section, we state a lemma which shows how the

Delone property of a sequence behaves under decimations.

Lemma 4.1.

(i) Let f ∈ {0, 1}Z
m

be a Delone sequence. If f ∈ kerH,W (g), then g is a Delone sequence.
(ii) Let f be a non-Delone sequence. If g ∈ kerH,W (f ), then g is a non-Delone sequence.

Proof.

(i) Since f ∈ ker(g), there exist n ∈ N, ω1, . . . , ωn ∈ W such that

f (x) = g(Hnx + Hn−1ωn + · · · + Hω2 + ω1).

In other words,

Hn(supp(f )) + Hn−1ωn + · · · + Hω2 + ω1 ⊆ supp(g).

Since supp(f ) is a Delone set, it follows that Hn(supp(f )) + Hn−1ωn + · · · + Hω2 + ω1 is
a Delone set which is contained in supp(g). Therefore supp(g) also is a Delone set. This
proves the first assertion.

(ii) Follows from the first assertion by contradiction. Indeed, suppose g ∈ ker(f ) is a
Delone sequence, then (i) would imply that f is a Delone sequence, which contradicts
the assumptions. �

The main result is concerned with the Delone property of H-automatic sets. If D is an
H-automatic subset D, then χD : Z

m → {0, 1} is H-automatic. As indicated in the section
above χD induces a substitution �χD

on the set of all sequences with values in {0, 1}ker(χD). A
special element in {0, 1}ker(χD) is the zero map 0, defined as 0(g) = 0 for all g ∈ ker(χD).

Consideration of the orbit of FχD
(0) under the action of the semigroup �χD

of products of
the decimation matrices defined by ker(χD) will provide a necessary and sufficient criterion
for an automatic set to be a Delone set. Namely,

Theorem 4.2. Let D ⊂ Z
m be an H-automatic set. D is a Delone set if and only if

0 �∈ �χD
(g(0))g∈ker(χD).

Proof. We begin with the necessity. To this end we assume that D is a Delone set, and
0 ∈ �χD

(g(0))g∈ker(χD). Since D is a Delone set, the relative denseness of D yields the
existence of an R > 0 such that BR(x) ∩ D �= ∅ for all x ∈ R

n.
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As we have seen, the sequence FD : Z
m → {0, 1}ker(χD) defined as

FD(x) = (g(x))g∈ker(χD)

is a fixed point of the substitution �χD
induced by the H-automatic sequence χD . Due to the

assumption 0 ∈ �χD
(g(0))g∈ker(χD), there exists an x0 ∈ Z

m such that

FD(x0) = 0.

Since FD is a fixed point of the substitution �χD
, it follows that

FD(y) = 0

holds for all y ∈ Hnx0 + κ−n(0) and all n ∈ N. By lemma 2.1, there exists an n0 ∈ N

such that BR(0) ⊂ κ−n0(0). This implies that BR(Hn0x0) ⊂ Hn0x0 + κ−n0(0). Since
FD(y) = 0 for all y ∈ BR(Hn0x0) it follows that χD(y) = 0 for all these y. This implies that
D ∩ BR(Hn0x0) = ∅, a contradiction to the Delone property of D. This shows that the Delone
property implies 0 �∈ �χD

(g(0))g∈ker(χD).
For the sufficiency we assume that 0 �∈ �χD

(g(0))g∈ker(χD). To prove that D is a Delone
set it is sufficient to show that there exists an R > 0 such that BR(x) ∩ D �= ∅ for all x ∈ Z

m.
Due to theorem 3.1, the sequence 	χD

is eventually periodic; let d be its minimal eventual
period. There exists an n0 ∈ N such that

	χD
(n0 + n) = 	χD

(n0 + n + d)

for all n ∈ N. Due to the fact that

Z
m =

⋃
z∈Z

m

{Hsz + κ−s(0)}

for all s ∈ N, there exists for every x ∈ Z
m and for every j ∈ {0, . . . , d − 1} a zj ∈ Z

m such
that

x ∈ Hn0+j zj + κ−(n0+j)(0). (10)

The relative denseness of D is established if we can show that for every x ∈ Z
m there exist

a j ∈ {0, . . . , d − 1} and a zj such that (10) holds, and such that there is a y ∈ Hn0+j zj +
κ−(n0+j)(0) for which χD(y) = 1.

For every y ∈ Hn0+j zj + κ−(n0+j)(0) there exist unique ω1, . . . , ωn0+j ∈ W such that

y = Hn0+j zj + Hn0+j−1ωn0+j + · · · + Hω2 + ω1.

Invoking (5), this shows that χD(y) can be computed as

χD(y) = ∂ωn0+j
◦ · · · ◦ ∂ω1(χD)(zj ).

Note that ∂ωn0+j
◦ · · · ◦ ∂ω1(χD) ∈ 	χD

(n0 + j) and that for every g ∈ 	χD
(n0 + j) there exists

a y ∈ Hn0+j zj + κ−(n0+j)(0) such that χD(y) = g(zj ). In other words,

{χD(y) | y ∈ Hn0+j zj + κ−(n0+j)(0)} = {g(zj ) | g ∈ 	χD
(n0 + j)}

i.e. the union of the values of g(zj ) for g ∈ 	χD
(n0 + j) is the same as the union of the values

of χD at the points y ∈ Hn0+j zj + κ−(n0+j)(0).
Thus, it remains to show that

1 ∈
d−1⋃
j=0

{g(zj ) | g ∈ 	χD
(n0 + j)}.
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Due to our assumption we have that

FD(y) �= 0

for all y ∈ ⋃d−1
j=0{Hn0+j zj + κ−(n0+j)(0)}. This means that there exists an h ∈ ker(χD) and a

y ∈ ⋃d−1
j=0{Hn0+j zj + κ−(n0+j)(0)} such that h(y) = 1.

Since y is given as y = Hn0+izi + Hn0+i−1ωn0+i + · · · + Hω2 + ω1 for an i ∈ {0, . . . , d − 1}
and ω1, . . . , ωn0+i ∈ W , it follows that

1 = h(y) = ∂ωn0+i
◦ · · · ◦ ∂ω1(h)(zi).

Due to the choice of n0, one has that ∂ωn0+i
◦ · · · ◦ ∂ω1(h) belongs to

⋃d−1
j=0 	χD

(n0 + j). This

shows that 1 ∈ ⋃d−1
j=0{g(zj ) | g ∈ 	χD

(n0 + j)} and finishes the proof. �

Remark. If D ⊂ R
m is a Delone set, then the packing radius defined by r0(D) = sup{r > 0 |

|Br(x) ∩ D| � 1,∀x ∈ R
m}, and the covering radius defined by r1(D) = inf{r > 0 |

|Br(x) ∩ D| � 1,∀x ∈ R
m} provide some characteristics of the Delone set. In particular, 2r0

is the minimal interpoint distance.
If D is an automatic Delone set, then being a subset of Z

m, it follows that r0 � 1/2.
Furthermore, the proof of the above theorem provides an upper bound for the covering radius
r1(D), namely

r1(D) � max{‖x − y‖ | x, y ∈ κ−(n0+d−1)}
where n0 and d are as in the proof of theorem 4.2.

Example 2. Observe from the discussion of the Thue–Morse, the Rudin–Shapiro and the
paperfolding sequence that the corresponding sets �tF(0), �rF(0), �pF(0) do not contain
the vector 0. Hence t, r, p are Delone sequences. For the Baum–Sweet sequence b, it holds
however that 0 ∈ �bF(0), implying that b is not a Delone sequence as suggested by the
large black regions in figure 3. Furthermore, from observation of the patterns, one obtains the
following values for the packing and covering radius: r0(supp(t)) = 1/2, r1(supp(t)) = 1;
r0(supp(p)) = 1/2, r1(supp(p)) = 1; r0(supp(r)) = 1/2, r1(supp(r)) = 1. The above-
mentioned estimate for r1(D) gives r1(supp(t)) � 1, r1(supp(p)) �

√
5, r1(supp(t)) �

√
13.

The possibility that a Delone sequence may have non-Delone sequences in its kernel is already
demonstrated by the paperfolding sequence which is Delone but has the identically zero
sequence 0 in its kernel. In the next section, we present an example of a Delone sequence
having a kernel element that is non-Delone and has infinite support.

5. Constructing automatic Delone sets from decimation matrices Aw

As stated in section 2, H-automatic sequences lead to a fixed point of the substitution defined
in (8), based on a set of decimation matrices Aw ∈ {0, 1}ker(f ), w ∈ W , where each Aw has
precisely a single 1 in each row. From now on, we will call any matrix A ∈ {0, 1}N×N that
contains precisely one 1 in each row, a decimation matrix.

If {Aw | w ∈ W } is a collection of decimation matrices, then these matrices define,
via equation (8), a substitution � on the set of sequences F : Z

m → {0, 1}N . If
the substitution � has a fixed point F : Z

m → {0, 1}N , then each of the sequences
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Fj : Z
m → {0, 1}, j ∈ {1, . . . , N}, defined as Fj (x) = F(x)j , i.e. the j th component of the

vector sequence F , is an H-automatic sequence, see [3] theorem 2.2.19.
The fixed points of a substitution defined by a collection of decimation matrices can be

characterized in the following way:

Lemma 5.1. Let � be the substitution on the sequences F : Z
m → {0, 1}N which is induced

by decimation matrices Aw ∈ {0, 1}N×N,w ∈ W . F is a fixed point of � if and only if for all
x ∈ Z

m

F(x) = Aω1 . . . Aωn
F(0) (11)

where x = ∑n
j=1 Hj−1ωj is the (H,W)-representation of x. In particular,

F(0) = A0F(0)

i.e. F(0) is a fixed point of A0.

Proof. Necessity: let F be a fixed point of �. Then, according to (8), we have that

F(0) = �(F)(0) = A0F(0).

Now let x ∈ Z
m\{0}, and x = ∑n

j=1 Hj−1ωj the (H,W)-representation, then the fixed point
property of F implies

F(x) = F(H(Hn−2ωn + Hn−3ωn−1 + · · · + ω2) + ω1)

= �(F)(H(Hn−2ωn + Hn−3ωn−1 + · · · + ω2) + ω1)

= Aω1F(Hn−2ωn + Hn−3ωn−1 + · · · + ω2).

A repeated application of this reasoning yields (11).
Sufficiency: now suppose that F(0) is a fixed point of A0, and that

F(x) = Aω1 . . . Aωn
F(0).

Then the substitution rule (8) gives �(F)(0) = A0F(0) = F(0) and, for all x ∈ Z
m,w ∈ W :

�(F)(Hx + w) = AwF(x) = AwAω1 . . . Aωn
F(0) = F(Hx + w).

Or, equivalently, �F(x) = F(x) for all x ∈ Z
m, meaning that F is a fixed point of the

substitution. �

Note that F(0) = (0, . . . , 0)T and F(0) = (1, . . . , 1)T are always fixed points of A0. They
induce the constant sequences F = 0 or F = 1, with all 0 or 1, respectively, as fixed points of
the substitution.

If F(0) is a fixed point of A0 that is not of this constant type, then (11) defines the fixed
point F = (F1, . . . ,FN)T of the substitution defined by the matrices Aw. All sequences Fj

are H-automatic. It follows that theorem 4.2 can be applied to each of the Fj -sequences to
find out whether or not Fj is a Delone sequence, by looking at the kernel and corresponding
decimation matrices proper to Fj . This kernel consists of all Fs which are reachable from Fj

in the Aw-defined decimation graph, i.e. for which there exists a (directed) path from Fj to
Fs . This is illustrated in the following:

Example 3. Consider the matrices

A0 =




0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0




Aw1 =




0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
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Figure 5. Decimation graph corresponding to the decimation matrices Aw0 = A0, Aw1 , Aw2 in
example 3.

Aw2 =




0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1




where ranking of rows and columns corresponds to F1,F2, . . . ,F7, in that order. The
corresponding decimation graph is presented in figure 5. If F = (F1,F2, . . . ,F7)

T is a
fixed point of the induced substitution, then every sequence Fj is (H,W)-automatic for any
proper pair (H,W). Moreover, F(0) is given as

α1




1
1
1
0
0
0
0




+ α2




0
0
0
1
0
0
0




+ α3




0
0
0
0
1
0
1




+ α4




0
0
0
0
0
1
0




with α1, . . . , α4 ∈ {0, 1}.
Note that

ker(F1) = ker(F2) = {F1,F2, . . . ,F7}
ker(F3) = ker(F4) = {F3,F4}
ker(F5) = ker(F6) = ker(F7) = {F5,F6,F7}.

It follows that (i) �F1 = �F2 is the semigroup of all products of the transition matrices
A0, Aw1 , Aw2 , (ii) �F3 = �F4 is the semigroup of all products of the 2 × 2-submatrices of
A0, Aw1 , Aw2 on rows and columns 3 and 4 and (iii) �F5 = �F6 = �F7 is the set of all products
of the 3 × 3-submatrices of Aw0 , Aw1 , Aw2 on rows and columns 5, 6, 7.

Calculations show that taking the fixed point F with F(0) = (1, 1, 1, 0, 1, 0, 1)T leads to
(0, . . . , 0)T �∈ �F1F(0), and thus, according to theorem 4.2, F1 and F2 are Delone sequences.
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x1

x2

1

Figure 6. The automatic Delone sequence F1 generated from the decimation graph in figure 5
with F(0) = (1, 1, 1, 0, 1, 0, 1)T . Display domain [−100, 120] × [−80, 80]. The white rectangle
serves as a reference for figure 7.

Also, (0, 0)T �∈ �F3(F3(0),F4(0))T , implying that F3 and F4 also have the Delone property.
However, (0, 0, 0)T ∈ �F5(F5(0)F6(0)F7(0))T , meaning that F5,F6 and F7 are non-Delone.

Figure 6 shows the graphical representation of a part of the automatic Delone set

corresponding to F1 for H = (−1 −1
2 −1

)
, with associated complete digit set W = {w0 =

(0, 0)T , w1 = (−1, 0)T , w2 = (−1, 1)T }. Figure 7 shows the structure of the corresponding
sequences F2 to F7. Observe that the property of the sequences being Delone or not is indeed
conform to lemma 4.1. If F(0) is changed to F(0) = (0, 0, 0, 0, 1, 1, 1)T , then F5,F6,F7

become Delone (the constant sequence 1) and F3 and F4 become non-Delone (the constant
sequence 0). Again conform to lemma 4.1, F1 and F2 are Delone. They are represented in
figure 8. We summarize the main idea of the example in

Lemma 5.2. Let � be a substitution induced by the decimation matrices Aw ∈ {0, 1}N×N,

w ∈ W , with fixed point F . For Fj , j ∈ {1, . . . , N} let Rj = {t | Ft ∈ ker(Fj )}. Then Fj is
a Delone sequence if and only if

0 �∈ �̃(Ft (0))t∈Rj

where �̃ is the semigroup of matrix products generated by the matrices(
aw

uv

)
u,v∈Rj

w ∈ W , and (Ft (0))t∈Rj
is the restriction of the vector F(0) to Rj .
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2 3

4

6

5

7

Figure 7. The automatic sequences Fj , j = 2, . . . , 7 in the white rectangle area of figure 6, to
which these patterns should be compared (display domain [0, 80] × [−30, 50]). F2, which has the
Delone property, is similar to F1. F3 and F4, which also have Delone property, are complementary
to each other, i.e. F3 = 1 − F4. The sequences F5–F7, which look similar, are all non-Delone.

Example 4. Let us reconsider the substitution of example 3 (with corresponding decimation
graph in figure 5), but now with the fixed point F defined by F(0) = (0, 0, 0, 0, 1, 0, 1)T

instead of (1, 1, 1, 0, 1, 0, 1)T . The corresponding sequences F5,F6,F7 remain the same
as those displayed in figure 7. But F3 and F4 now become non-Delone (the constant
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1 2

Figure 8. The automatic sequences F1 and F2 generated from the decimation graph in figure 5
with F(0) = (0, 0, 0, 0, 1, 1, 1)T . Display domain [−40, 40] × [−40, 40].

1 2

Figure 9. Graphical representation of the automatic non-Delone sequences F1 and F2 generated
from the decimation graph in figure 5 with F(0) = (0, 0, 0, 0, 1, 0, 1)T . Display domain
[15, 95] × [−80, 80]. Compare the background patterns with figure 8.

0-sequence), and also F1 and F2 become non-Delone, as displayed in figure 9. Observe
that the set Q = {F3,F4,F5,F6,F7} is (decimation) invariant, i.e. every (directed) path
starting in Q, remains in Q. On the other hand, the set {F1,F2} is not invariant. In fact, there
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exist (directed) paths, namely w0w0, or w1w1, or w2, such that the endpoint of the path is not
in {F1,F2}, no matter whether the path starts in F1 or F2.

From this example, it seems that the fact that the sequences in the invariant set
Q = {F3,F4,F5,F6,F7} are all non-Delone, implies that the sequences F1 and F2

from which there is a path to the invariant set Q, are also non-Delone. That this
is generally true is stated in the following theorem which also provides a converse of
lemma 4.1.

Theorem 5.3. Let Aw ∈ {0, 1}N×N,w ∈ W , be a collection of decimation matrices and
let � be the induced substitution. Furthermore, let F = (F1,F2, . . . ,FN) be a fixed point
of the substitution � and let Q,R ⊂ {1, . . . , N} form a partition of {1, . . . , N} such that
Q = {Fq | q ∈ Q} is invariant and such that for every sequence in R = {Fr | r ∈ R} there
exists a (directed) path to the invariant set Q. Then, if every sequence in the invariant set Q
is non-Delone, all sequences in R are non-Delone.

Proof. By renumbering, if necessary, we may assume that R = {1, . . . , r} and Q =
{r + 1, . . . , N}. Then the matrices Aw are of the form

Aw =
(

αw βw

0 γw

)

where αw is an r × r matrix, γw is an (N − r)× (N − r) matrix and βw is an r × (N − r) matrix
and 0 denotes a proper zero matrix. Moreover, the elements of the semigroup � generated by
all products of the matrices Aw have the same structure.

According to lemma 5.2, in order to show that all sequences in R are non-Delone, it is
sufficient to show that there exists an A ∈ � such that AF(0) = 0. Since every sequence in
Q is non-Delone, there exists an A ∈ � such that

AF(0) =




a1
...

ar

0
...

0




.

To ensure the existence of A we begin with the following observation. If in the decimation
graph associated with the matrices Aw there is a (directed) path ω1 . . . ωL from Fu to Fv , then
the product Aω1 . . . AωL

has a 1 at the (u, v)-entry. On the other hand, if the entry (u, v) of the
product Aω1 . . . AωL

is equal to 1, then the (directed) path ω1 . . . ωL which starts in Fu ends
in Fv .

For ν = (ω1, . . . , ωL) ∈ WL and L ∈ N one defines Tν,L : {1, . . . , N} → {1, . . . , N} as

Tν,L(u) = endpoint of the (directed) path ν starting in Fu.

Using the maps Tν,L one can establish the existence of an M ∈ N and ν ∈ WM such that
Tν,M(R) ⊆ Q.

Due to the properties of R and Q, for r1 ∈ R there exist ν1, L1 such that

Tν1,L1(r1) ∈ Q.

This yields
∣∣Tν1,L1(R) ∩ R

∣∣ < |R|. For r2 ∈ Tν1,L1(R) ∩ R there exist ν2, L2 such that

Tν2,L2(r2) ∈ Q
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,w2w1

,w2w1

w0w0
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(0)=0

Figure 10. The automaton that generates the sequences in figures 11 and 12.

and
∣∣Tν2,L2 ◦ Tν1,L1(R) ∩ Tν1,L1(R) ∩ R

∣∣ <
∣∣Tν1,L1(R) ∩ R

∣∣. Continuing in this way finally
leads to a ν and an M such that Tν,M(R) ⊆ Q.

Associated with the (directed) path ν is a product of the matrices Aw. This matrix is of
the following form:

Aν,M =
(

0 βν,M

0 γν,M

)

where 0 indicates proper zero matrices. Using the property of the matrix A ∈ � we finally
arrive at

Aν,MAF(0) =




0
...

0


 .

This shows that all sequences Fr ∈ R are non-Delone. �

Let f : Z
m → {0, 1} be a sequence, then f C denotes the complement of f , i.e

f C(s) = 1 − f (s).

Lemma 5.4. f C is Delone if and only if 1 �∈ �F(0).

Proof. Note that, if F(0) = (F1(0),F2(0), . . . ,FN(0))T ∈ {0, 1}N is a fixed point of A0, then
its complement FC(0) = (

FC
1 (0),FC

2 (0), . . . ,FC
N (0)

)T
is also a fixed point of A0. It means

that equation (11) can be started with FC(0) instead of F(0), generating a set of automatic
sequences FC

j which are all the complement of the corresponding Fj . FC being Delone means
that 0 �∈ �FC(0), which is equivalent to 1 �∈ �F(0). �

We conclude with two remarks concerning the morphology of the Delone sets associated
with Delone sequences.

Remark 1. Observe that if a sequence f is Delone, then its complement f C may also be
Delone, as illustrated by the Thue–Morse, the paperfolding and the Rudin–Shapiro sequences.
It may also happen that f and f C are complementary in their Delone-qualification: e.g., the
Baum–Sweet sequence is non-Delone, but its complement is Delone. Non-Delone sequences
exhibit a structure where ever growing regions of neighbouring zeros (black regions in the
graphical representations) appear as one moves farther away from the origin. Sometimes, these
regions (or their complementary parts in the graphical representation) form an eye-catching
fractal-like pattern (repeating similar structures on larger scales). The complement f C of a
non-Delone sequence f may be Delone, also with an obvious self-similar character if this is
the case for f itself (e.g., the complement of the Baum–Sweet sequence). And finally, the fact
that both a sequence and its complement may be non-Delone is illustrated by the sequences
F5–F7 in figure 7. Candidates for ‘quasi-periodic’-like sequences which look homogenous all
over space, such as the two-dimensional Thue–Morse, the paperfolding and the Rudin–Shapiro
sequences, and the sequences F3 and F4 in figure 7, are to be found among those where both
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Figure 11. The automatic sequence F1 corresponding to the automaton displayed in figure 10,

for H = (−1 −1
2 −1

)
and different complete digit sets. All sequences are Delone, and so are their

complements which correspond to the sequence F2. Display domain [−40, 40] × [−40, 40].

the sequence and its complement are Delone. This condition is however not sufficient for
an homogenous pattern, as the sequence in figure 6 illustrates, and where the corresponding
kernel contains non-Delone sequences. We conjecture that an homogenous aperiodic pattern
for the graphical representation of a sequence occurs if the sequence and its complement are
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Figure 12. The automatic sequence F1 corresponding to the automaton displayed in figure 10,

for H = (
0 −3
1 0

)
and different complete digit sets. All sequences are Delone, and so are their

complements which correspond to the sequence F2. Display domain [−40, 40] × [−40, 40].

Delone, and when the associated kernel-graph is strongly connected (i.e. every sequence in
the kernel is some decimation of all the other sequences in the kernel).

Remark 2. Observe from the previous developments that the fact that a sequence appearing in
a kernel-graph is Delone or not only depends on the set of decimation matrices {Aw | w ∈ W }



Automatic sets and Delone sets 4037

w0=

w1=

w2=

(
(
(

(
(
(

0
0
-2
1
2
1

w0=

w1=

w2=

(
(
(

(
(
(

0
0
-1
0
1
1

w0=

w1=

w2=

(
(
(

(
(
(

0
0
-5
-2
-4
5

w0=

w1=

w2=

(
(
(

(
(
(

0
0
2
-3
-2
0

w0=

w1=

w2=

(
(
(

(
(
(

0
0
-1
0
-2
0

12

3

,w2

,w2

w2

w0

w1

w0

w0

w1
w1

1

3

2

(0)=1

(0)=1
(0)=0

Figure 13. The automatic sequence F1 corresponding to the automaton displayed on top, for

H = (
0 −3
1 0

)
and different complete digit sets. All sequences are non-Delone, and so are their

complements. The corresponding sequences F2 and F3 are similar in nature. Display domain
[−50, 50] × [−50, 50].

and the fixed point of A0 that is taken asF(0), and not on the specific expanding endomorphism
H and the associated complete digit set W . The actual sequences, and by consequence also
their graphical representations, do however depend on the (H,W)-specification. Figure 11
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displays the automatic sequence F1, generated by the automaton shown in figure 10, for
different complete digit sets W for the same H = (−1

2
−1
−1

)
. Figure 12 does the same for the

matrix H = ( 0
1

−3
0

)
. All these examples are Delone, and so are the complementary sequences.

Figure 13 shows sequences for the automaton displayed on top and for H = ( 0
1

−3
0

)
. These

sequences are all non-Delone, and so are their complements. But observe that this is not always
visually clear from the limited displayed part of the corresponding graphical representation: one
has to look in an area much farther away from the origin in order to find larger black areas.
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